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The unidirectional flow of an incompressible, electrically conducting, viscous 
fluid along cylindrical pipes is considered. An external magnetic field, B,, 
which lies in the plane transverse to the flow is applied. It is shown that the 
governing equations, written in the co-ordinate system traced out by B,, are 
mathematically very similar to those for a uniform field. 

The paper deals mainly with ducts whose walls are insulators. Though exact 
solutions (valid for all values of the Hartmann number) are derived, the limit of 
high Hartmann number is taken for detailed discussion. Transition layers (or, 
loosely, ‘wakes ’) can arise which are centred on curved field lines. In  some cases, 
reversed flow occurs in part of the core (‘radial-type’ fields). Situations also 
arise where the magnitude (and sign) of the velocity remains the same as for 
B, = 0, whatever the strength of the applied, transverse (azimuthal) magnetic 
field. 

1. Introduction 
Problems associated with pressure driven flows of electrically conducting 

fluid have attracted considerable attention. Almost always the applied, trans- 
verse magnetic field lines are parallel. A few workers, e.g. Globe (1959), have 
considered a radial field. In  this paper, a proper examination of the general case 
is given. It is fairly well known that the governing equations are linear whatever 
the form of B,, the applied transverse magnetic field. If the orthogonal, curvi- 
linear co-ordinate system appropriate to B, is used, the governing equations are 
very similar to those for uniform fields. In  fact, each exact solution derived for a 
specific B, can be generalized to cover any transverse field. 

For a duct of arbitrary cross-section with insulating walls, the main features of 
the flow in the limit of large Hartmann number are derived by boundary-layer 
techniques (see $3). For a rectangular? duct, the exact solution is also given. The 
above pair of results are applied to two explicit cases. In  the first, the field 
lines are curved; B, varies between field lines but not along them. In the second, 
the field lines are radial; B, varies along the field lines but not normal to  them. 
The exact solution is given for flow through an annular channel, when the field 
lines are closed loops and each boundary coincides with a field line. A boundary- 
layer approach is also employed, in the limit of large Hartmann number, The 

t One pair of sides are aligned with B,, the other pair are normal to the applied field. 
21 Fluid Meoh. 31 
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latter type of analysis is carried out for the case where the field is normal to the 
walls of the annulus. 

Many novel features arise, due to the non-uniformity of B,. These are fully 
discussed as, and where, they arise. M.K.S. units are employed throughout this 
paper and as far as possible, the notation is standard. 

2. The governing equations 
Steady, laminar, unidirectional flow along a cylindrical pipe is to be examined. 

In  addition, it is required that pressure varies linearly with distance, z ,  along the 
pipe and that no other quantity varies with z. At this stage, the discussion is 
limited to finding out if such a flow is consistent with the equations governing 
magneto-hydrodynamic flows. Since there is no time dependence, the electric 
field satisfies 

Also, there is only variation with II: and y, and so equation (1) requires that 

This means that E, is constant. In  fact, the value of E, is something that can be 
set by the design of the experiment. This paper is devoted to the case 

i.e. there is no potential difference between the ends of the channel. Since the 
flow is in the z-direction it follows from 

curlE = 0. (1) 

aE,jay = aE,jax = 0. 

E, = 0, ( 2 )  

j = ~ ( E s V A B )  (3) 
that current lines lie in the (x ,  y)-plane. Here j represents current, v velocity, 
B magnetic field and 

B = B,+(B.z)% 

Now, div B = 0 and B, depends only on x and y. Thus 

As pj = curl B, it  can be deduced from equation (3) that 

electrical conductivity. Let 

divB, = 0. (4) 

curlB, = 0. ( 5 )  
The flow which is being examined is the large time limit of an unsteady flow. 

Two ways in which the flow can be set up are immediately apparent. The magnetic 
field could be gradually switched on; the flow being initially the appropriate 
Poiseuille one. Alternatively, the pressure difference between the ends of the 
channel could be gradually increased from zero to the desired value. In  each 
of the above cases, a precursory examination shows that B, remains zero outside 
the current loops and that the applied transverse field remains unaffected? by 
the flow. Consequently, B, is the applied transverse magnetic field. Equations 
(4) and (5) are consistent with the latter fact. 

The governing equations are (cf. Shercliff 1953) 

pvV2G + (Bo. V) (B,/p) = - P, 

ajax, ajay ( p  + (B,z/z,u)) = 0,  

(6) 

hV2B,+(Bo.V)X = 0, (7 )  
(8) 

It is assumed that V = V,s and a@ 3 0, with the one exception that ap/az = - P(t).  
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- P = ap/ax = constant. The positive 2-direction is chosen to be that which 
gives P > 0. Equation (8) indicates the absence of forces tending to swirl the 
fluid or move it across the pipe. B, is the stream function for current, i.e, current 
flows along the lines B, = constant. In  equations (6)-(8)) p represents density, 
v kinematic viscosity and ,u permeability. 

B, is a two-dimensional vector function. By virtue of equations (4) and (5) we 
can define a potential $(x, y), and a stream function I,+, y), such that 

B, = B*'LV# = B*L curl ($2). (9) 

L is a reference length. B* is a reference value for the applied field. These two 
quantities will be explicitly defined very shortly. The curves q5 = constant and 
$ = constant form an orthogonal, curvilinear co-ordinate system. The problem 
is better suited to this 'natural' co-ordinate frame. The scale factor for the $ co- 
ordinate is h, and that for the $ co-ordinate, h,. The transformation between the 
non-dimensional variables {(x/L) ,  (y/L)} and {$, @} corresponds to a conformal 
mapping. The equations (9) become 

Bo$ = (B*/h,) 4 = (B*/h*) 4. 
Thus h, = h, = {B*/Bo($4 $)} = W*/Jf), (10) 

where M = {a*B,L/(pv)*} and M* = (a*B*L/(pv)*). (11) 

= ML-l = d B 0 ( p v ) * .  (12) 

M is the 'local ' value of the Hartmann number. In  later sections, the 'Hartmann 
vector', (3, is used. 

We can now rewrite equations (6) and (7)  in the form 

and 

where s = p-yapV)- t .  (16) 

Equations (14) and (15) are only slightly different from those given by Shercliff 
(1953) for a uniform field. Indeed, each of the exact solutions obtained for a uni- 
form applied field is a special case of the corresponding general solution obtained 
by solving equations (14) and (15). Furthermore, with only reasonable restriction 
on M ( $ ,  $) all the usual boundary-layer techniques can be applied in the limit,of 
large Hartmann number. Useful, alternative forms of the equations (14) and 
(15) are 

and (18) 

21-2 
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where “1 n = (V, f sB,) (pv/PL2). (19) 

The choice of the reference field value and the reference length requires care. 
The restriction that there is no neutral point of B, within the duct, is imp0sed.i 

FIGURE 1. The co-ordinate system. 

The relevant part of the applied field is depicted in figure 1. The curved field line, 
C,, passing through the points A and D is defined as @ = 0. The curve marked 
C, is defined as q5 = 0. The value of # at the point D is denoted by q5D. Now 

where I measures distance along C,. Equations (9) and (10) are used in deriving 
the latter result. In  order that B* be themean value of B on A D ,  it is chosenso that 
$ D  = 1.Thus 

B* = ( I jh)$~B, , (x ,y)dZ.  (20) 
0 

In fact, M* and p* are the respective mean values of M and p on AD. q5 and @ 
can now be determined, in terms of x and y, from the equations (9), the equation 
(20) and the fact that A is the origin of the new co-ordinate system. 

The remainder of this paper deals, in detail, with flow through channels with 
insulating walls. The velocity V,  will be zero at any boundary. In the paragraph 
below equation (5) it was shown that B, may be taken as zero a t  the outer bound- 
ary. If there are any inner walls the remarks made in Todd (1967) apply. In  

t If  there is a neutral point, a more detailed discussion of the (4, 3)  co-ordinate system 
is required. 
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$$6 and 7, an annular channal is involved. In  these two cases, the remaining 
boundary conditions are 

n L 

fcE.dl = 0) j .dl = 0 and B, = constant at  the inner wall. (21) 
C' 

Cis any closed curve (in the annulus) which surrounds the inner wall. C* is either 
of the two boundary curves. 

3. Flow at high Hartmann number in insulating ducts of arbitrary 
cross-section 

The topology of the applied transverse magnetic field is just as important as 
the shape of the duct. To be precise, it is the topology of the duct in (9, $) space 
which matters. Some cases of outstanding interest are discussed below. At the 
(outer) wall m = n = 0 (see $ 2 ) .  

(i) A duct with a concave boundary 

The region of flow is taken to be simply connected and bounded by a smooth 
concave curve. This is illustrated in figure 2 .  The reference curve has been chosen 

FIGURE 2. A smooth concave duct for which the region of flow is simply Connected. 

so that 0 < $ < #*, where $* is of order one. High Hartmann number means 
M* 9 1. In order to apply the usual boundary-layer techniques, the following 
restrictions are necessary : (i) the first- and second-order partial derivatives of 
k($, $) are not greatly in excess of k; (ii) the first two derivatives off+($) and 
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f-($) are not greatly in excess of unity, except near $ = $+ and $ = $-. It is 
a consequence of requirement (i) that k is of order unity where 111.1 is not greatly in 
excess of one. 

A boundary-layer approach shows that m has a boundary layer only on the 
left-hand side of the duct (i.e. on 9 = f - ( $ ) ) .  On the right-hand portion of the 
wall (4 = f+($) ) ,  m has no boundary layer. Lastly, there is a small obscure region 
near the point $+ and the point $- (figure 2 ) .  A similar result holds for n, left and 
right being interchanged. Shercliff (1953) was the first to note these features. 
He gives a full boundary-layer analysis. The typical 'thickness ' of these layers 
in the (9, $)-plane is (M*lcos 191)-1, where 8 is the angle which the inward normal 
makes with the 9 axis. Let E be the corresponding distance in real space then it 
follows from equations (10) that 

(M"[cosO[)-~ = (eM/LN*)  = (€/Lhc) 

therefore = L ( M J ~ ~ ~ O ~ ) - ~  = (plcosel)--l. (22) 
The transformation is conformal and so (8) is still the angle between the (curved) 
field line and the normal to the boundary. This result merely confirms that it is 
the local behaviour of B, which is important. Outside the boundary layers and 
the obscure regions, there is a core flow. It is consistent to seek solutions of the 

type 

and 

where the A ' s  and N ' s  have values not greatly in excess of k ( 9 ,  $). It is found 

mcore = mc = (H*)-'dl(gS, $) + (Jf*)-2J2(gS, $) + 
%core = n c  = (M*)-l 4 9 7  $) + P*F2 -499 $) + . . * 9 

that 

and 

f + W  

c 
m, = (M*)-l J k( t ,  $) at + O{m,(M*)-l) 

nc = (M*)-l  k ( t ,  $)at + O{nc(M*)--l}. 
f-W 

(23) 

(24) 

In  deriving equations (23) and (24), the restrictions detailed in the first paragraph 
were required. The most interesting feature of the flow can be obtained without 
invoking the higher order correction terms. It follows from equations (19), (23) 

It can be immediately concluded that (V,), does not vary along magnetic field lines, 
though it does vary between them (i.e. with $). This is due to the fact that the 
applied fields (though curved), strongly resist being stretched. The latter feature 
could, perhaps, be more easily seen from (7) which becomes simply (B, . V) V,  = 0 
in the core. To highest order, the flow rate, Q, is given by 

Also. 

Obviously, there is a curve,? 9 = $($), in the core, on which (BB)c = 0. The cur- 
rent loops to the right of this are described in a clockwise sense; whereas those 

t $(@) is a single valued function of @. 
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currents on the left, loop in an anticlockwise sense (see figure 5). The actual com- 
ponents of the current density vector, j, are obtained from 

Equation (29) shows that, to highest order, the Lorentz force balances the pres- 
sure gradient at  each point in the core. If B, does not vary between field lines (see 
$35(ii); 7(ii)) and if the duct is symmetric about an axis q5 = constant, then 
j, = 0. Otherwisejg will, in general, be non-zero. 

The cross-section of the duct is illustrated in figure 3. An analysis, similar to that 
of $ 3  (i), reveals that there are three distinct core flows. Todd (1967) gives a full 

(ii) The ‘Horseshoe ’ duct 

FIGURE 3. A ‘horseshoe’ duct. 

analysis for a uniform applied field. The regions are labelled 1,2 and 3, as shown in 

i jf+ k( t ,  all.) at 
figure 3. In  region 1 

m = (7nl)c = (N*)-1 
4 

n = (nJC = (M*)-l and 
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It follows from equations (31) that the values of (mJC and (nl)c at $ = $- are 
given by 

M*(m,), = 1 k(t ,  $-)at and M*(n,), = 1 k(t ,  $-)at. (32) 
f+(*-) I 

# f - W )  
In region 2 

Thus a t  $ = $-. 

@l)C = (mz),; @ Z ) C  = ( M * ) - ‘ y  

(nJc- (nzh = (Jf*)-lj 

w, $-)at 4 (n1)c. 

k( t ,  $.-) dt = C, (constant). 

U + W )  

However, 
O + W - )  

f-ef-1 
(34) 

This suggests the possibility of a ‘wake’, or transition layer, centred about 
$ = $-. (In real space this is a curved field line!) Within the wake, it can be as- 
sumed that a/a$ @ a/a$. Consequently, equation (18) reduces to 

8% an 
M” - = - k(# ,  @-). _ _  

8 4  
(351 

This equation can be rewritten as 

As in Todd (1967), solutions are sought which are of the (self-similar) form 

n- (n8)c{4, $-} = F(a) ,  where CI. = (M*) t  (@- $-)I($ - $+I+. (36) 

The appropriate boundary conditions are 

F + O  as a+--co; F + C 1  as a-++co. 

The desired solution is, F = +(C,) (1  + erf {a}). (37) 

A similar wake for m (but not n) occurs for $ < #-, @ = $-. Of course, m and 
n are composite physical quantities. Thus, the velocity and induced magnetic 
field have transition layers (‘wakes’) on both sides. Some further comments on 
these ‘wakes ’ are made at  the end of the paper. Flow through an annular channel 
in a uniform field was dealt with in Todd (1967). ‘Wakes’ of the above type were 
found to occur. This is also the case for ducts which are annular in (4, $) space. 
Such ducts are necessarily annular in (x, y) space. 

(iii) Other cases 

A pipe whose boundary curve(s) has a convex bulge is covered by the first part of 
this section provided no field line intersects the boundary more than twice. 
Otherwise, the appropriate analysis is the latter one. Also, it is worth remarking 
that there is little difficulty if the boundary is piecewise smooth, unless one, or 
more, piece(s) lies along a field line. This one exceptional case is covered in the 
next section. 
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4. Flow in insulating 'Rectangular' ducts 
A 'rectangular ' duct is one with four sides. One pair of opposite sides lie on the 

curves qi = 0 and qi = 1, respectively. The other pair of sides have $ = 0 and 
@ = r,~ (constant), respectively. L is the length AD of the curve $ = 0. B* is 
the mean value of B on AD (cf. $2). The exact solutions are obtained by solving 
the equations (17) and (18), together with the boundary conditions m = 0 = n 
(cf. last paragraph of Q 2). The solution for m is 

where 

and 

The order of integration in equation (40) can, of course, be reversed. The solution 
for n is 

It may be verified that the above solutions reduce to those given by Shercliff 
(1953) for the case of a uniform, applied field. 

At large Hartmann number, the work of Q3(i) must apply. (The 'obscure' 
regions will correspond to a horizontal boundary layer on the wall @ = 0 and the 
wall @ = 7.) For M* 9 1, 

The second term on the right-hand side of equation (42) can be neglected unless it 
is desired to examine the horizontal boundary layers (for which the high har- 
monics become important). Thus, a, is replaced by 2-1M* in the exact solution. 
In  this approximation, 

a, = (&M*)  + O(L27?/M*?p). (42) 

The remaining part of the right-hand side of equation (38) reduces to 
1 

0 
(l-exp\{-a*qi})/ k(t,$)(l-exp(M*(t- l))}dt/M*(l-exp(-M*}). 

Thus, to highest order 

m = ( ~ * ) - l ~ l k ( t , $ ) d t ( l - e x p ( - ~ * q i ) } .  ' (43) 

Equation (39) is in agreement with the results of $3 (i). A similar approximation 
inequation (4l)gives 

n = (M*)-l k(t,$)dt(l-exp(-M*(l-~))}. su" (44) 
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It is interesting to note that Shercliff (1953) had to include the highest correction 
term in equation (42) in order to obtain the corresponding result for a uniform 
field. This is a comment on the operations which one uses to evaluate explicitly 
the coefficients of the Fourier series. In this limit of large Hartmann number, the 
following results are valid away from the boundaries (cf. $ 3  (i)) : 

There will be two sets of current loops as described below equation (27). From 
(30), it can be deduced that 

If there is variation of B, between field lines, ak/a$ $. 0. In  such cases a non-zero 
( j$)c is needed to adjust (&)c so that (&)c = PBrl  everywhere in the core. This 
means that some current lines come out of the Hartmann boundary layers and 
then rejoin the same boundary layer (see figure 5). If B, does not vary between 
field lines, this effect is not present and (j$)c = 0. The two specific examples given 
in $$5 ( i )  and (ii) illustrate the former and latter features, respectively. 

The boundary layers on the 'horizontal' side walls ($ = 0, $ = 7) can be 
analysed. As shown by Shercliff (1953), these are thicker and of a different nature 
than the Hartmann boundary layers on the vertical walls (q5 = 0 , l ) .  The vari- 
ables m and n are again employed. It is reasonable to assume that, in this region, 
a/a$ 9 ajaq5. The case form at the bottom boundary ($ = 0) will be discussed in 
detail. The results for n, and for $ = 7 can then be inferred. Equation (17) is 
approximated by 

The singular points of k ( $ , $ )  are those of the applied magnetic field. In  order to 
proceed, it will have to be assumed that these (points) are such that the radius 
of convergence of the series expansion for k(q5, 0) about q5 = 1 is greater than 
unity. Let this series expansion be 

m 

qq5, 0) = c d'(1 -$Y. (49) 
1=0 

By virtue of the above remarks, the series (49) can be integrated and differentiated 
term by term. This holds for any number of differentiations. It follows that 

M*mc(q5, 0) = 5 {a'( 1 - $)"+I/( L +  I)}. 
1=0 

The required boundary-layer variable, 6, is defined as 

5 = {aJ!f*P/(l- $1). ( 50) 

A solution, valid in the layer, is sought in the form 
m -- 

M*,m = 3 (1 - q5)1++ld,{( L + - G1+l($)]. 
1=0 
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Thelower edge of the boundary layer is achieved as -+ 00. In  this limit, each of 
the G, will be required to vanish. This ensures that m -+ m,. At the wall, m = 0 
and so it is required that 

The (convergence) properties of the series (51) are assumed to be similar to those 
of the series (49). The equation (48) is satisfied if 

G,(O) = (~) - l .  ( 5 2 )  

for all the relevant values of L. Equation (53) is the confluent hypergeometric 
equation with the independent variable ( -  8). There are many ways in which 
the desired solution can be presented. For example, one solution is a polynomial 
of degree 1. Thus for L = 1, the desired solution can very easily be found by reduc- 
tion of order (see Shercliff 1953). The general solution is 

G, = (l/L)P( - 11 (8 ) )  - 5) - { ( L -  1) ! 2 )  { V L +  ( & ) ) } - l E W  - 6s- (+)l(Bl - 8, (541 

where B is the confluent hypergeometric function. In  fact G, is just a multiple 
of Ul( - L I  * I -  t), which is a confluent hypergeometric function of the third kind. 
U, is fully discussed in Morse & Feshbach (1953). As 6 -+ co, 

lGll - (<)+(*)exp{-C}. (55 )  
In  a paper on singular perturbation problems, Eckhaus & de Jager (1966) 

show that the solution to the above boundary-layer problem can also be given in 
the form 

This form may sometimes be more convenient than (51), which is a series ex- 
pansion of it. (The series solution was employed in the detailed calculations of 
0 5 (ii).) A similar analysis holds for n in the boundary layer on $ = 0. The result is 

m 

where k(q5, 0 )  = C e L @  and 5 = ($2M*/4q5). 
r=O 

The analysis for the boundary layer on $ = 7 is identical except that (7 - $) 
takes the place of $ in the definitions of the boundary-layer variables and k(#, 7) 
is used instead of k($, 0).  The above results show that m and n, the composite 
variables, have broadening boundary layers, the thickness tending to zero at  the 
end where the core value is zero. The real physical quantities have a boundary 
layer of more or less uniform thickness. The typical thickness of the layer on 
$ = 0, e0 (say), is given by 

The latter result may be deduced from equations (9), ( lo) ,  (50) and (51). L is the 
length of the boundary $ = 0 and p* the average value of ~3 on it. In a similar 
way, it can be shown that the typical thickness of the layer on $ = 7, e7 (say), 

€o = L’(/3*)-B. (57) 

is given by q) = q(p,*)-4 (58) 
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where L, is the length of the boundary $ = 7 and /l: is the mean value of /l 
on it. The latter result is in agreement with the fact that the actual choice of the 
reference field line is of no physical significance. The first four boundary-layer 

0 5  I 
G 

FIGURE 4. The first four boundary-layer functions. 

functions are plotted in figure 4. Shercliff (1953) plotted G ,  against {2(g)*). It 
seems possible that these side boundary layers might have points of inflexion in 
some cases. This is not found for the problem discussed in 95 (ii). 

5. Two applications of the theory for rectangular ducts 
A circular field and a radial field are considered. These fields have special 

features and the results for them, together with the general theory, provide an 
ample understanding of flows within rectangular ducts. 

(i) A circular jield 

P = (Qlr)& (59) 

where C is a positivet constant and ( r ,  0) are plane polar co-ordinates. The above 
field can be created by a line current, although the current-carrying conductor 
would have to be sheathed in an insulator to let E, = 0, outside. The rectangular 
duct is defined by 0 < 8 < 8,; a8 < r < a. The typical length is chosen to be 

t The results for C < 0, follow from those for p = {lCl/rj 8;  the only change being the 
reversal of all currents. 
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(aI9,). $ = 0 = $ corresponds to r = a, I9 = 0. Thus 

$ = (Old,), $ = ( - 1/8,)log ( r /a)  and 7 = ( - lie,) log (6). (60) 

Also, a6,/3* = M* = CB,, k = exp { - 2I9,$}. (61) 

The analysis of $4 gives the following results for the limit of high Hartmann 
number : 

(62) 

(Qc = (PI93”2/2pvM*), 

P A c  = P W O ,  - 2@/2B,, 

(job = ( j J C  = w o -  80)/2Bo, 
- ( j A c  = (&)c= (P/Bo). and 

0 Side boundary layer 

Hartrnann layer 

FIGURE 5. Current flow for a ‘rectangular’ duct in a circular field. 

The core current paths are illustrated in figure 5 ,  for which 19, was taken as 
(in) and 6 = $. The Hartmann boundary layers have a typical thickness (T/C). 
This corresponds to the fact that B, varies inversely with r .  In  the side boundary 
layer at  r = a, 

and n = ${l -a,([)} (M*)-l .  

Thus only G, is needed. This happens only for circular and uniform fields, which 
have the property, B, = B,($) 8. In all other cases, the hierarchy of boundary- 
layer functions are needed. The boundary-layer profiles of V,, at q5 = 4 and $, 
are given in figure 6. K($, $) is symmetric about + = (4). The typical thickness of 
the side boundary layer at r = a is a(B,/C)*. For the layer at  r = as, the thickness 
is a(I9,6/C)*. To highest order, the flow rate, Q ,  is given by 

= (1 - $) (1 - G A 8 )  ( J f * ) - l  

Q = {I’u~&’,~( 1 - 64) /8M*p~} .  (63) 
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Lastly, it is worth remarking that the high Hartmann number analysis applies 
however close 8 is to zero. This is a consequence of the fact that 

8{Bo(a8)} = constant, independent of 8. 

(ii) A radial field 

P = (D/r)F, (64 )  
where D is a positive? constant. The duct is defined by 0 < 0 < 0, and a8 < r < a. 
The typical length is a( 1 - 8) and the point q5 = 0 = q9 corresponds to r = a8, 
8 = 0. A good approximation to this radial field can be obtained by suitably 

I I I I I 
0 2  0.4 0 6  0 8  1.0 

t 

lpM* 

FIGURE 6. Some profiles of V, in the side boundary layers (B, circular). 

placed cylindrical pole pieces. Now 

(s = y-llog (r/aS), q9 = y-l0 and q = y-W0, where y = log (I/@. 

Also, a(1-8)/3* = M* = yD and k = (~8/1-8)~exp(2y(s}. (65 )  

The analysis of $4, which deals with the flow in the limit of high Hartmann 
number, gives the following results: 

(66)  1 
(Q, = Pa2( 1 - 82)/4pvD = constant, 

(&), = (j,)c = (P/Bo); j, = A  = 0, 
m, = y{l-82exp(2yq5)}/2M*(1-8)2 

nc = ya2{exp (2y$) - 1}/2M*( 1 - 8)2. 

The typical thickness of the Hartmann layer on r = a8 is (aS/D). On r = a, 
the thickness is (a/D).  In  neither case, is there any dependence on 8. In  the side 

t See remarks below equation (59). 

and 
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d,  = ( j ~ ~ ( - 2 y ) [ / ( 1 - 6 ) ~ ( ~ ! ) )  = (-)c8-2e, .  

335 

boundary layers the equations (51), (54) and (56) apply with 

(67) 

The layer on 8 = O0 is identical with that on 8 = 0. Figure 7 shows the profiles 
of V ,  at #I = $, and 2, for the case 8, = (477) and 6 = 9. The typical thickness of 
these layers is a( 1 - 6 )  ( yD)-*. The applied magnetic field described in this section 
has the property B, = B,($) 4. The only other field with this property is the 
uniform one. I n  these two cases, j, = 0 for a duct symmetric about an axis 
$ = constant (see $3).  

016 

6 

0 3  0 6  0 9  1.2 1.5 

p M *  
FIGURE 7. Some profiles of V, in the side boundary layers for a radial field. (The 

profila of V, at q5 = Q is not significantly different from that for 9 = $.) 

6. Another flow across an azimuthal, transverse field 
In  some situations the applied magnetic field lines are closed loops. This is 

the case for a circular field ($5(i)). It also occurs if two adjacent line currents 
are in opposition. The type of duct to be considered is drawn in figure 8. The inner 
boundary coincides with a field line. So does the outer wall, which is taken as 
@ = 0, the reference curve. The equipotential, q5 = 0,  need not be explicitly de- 
fined. At the inner wall, @ = y. The governing equations are (17) and (18). At 
the outer boundary, m = n = 0 (see $ 2 ) .  The usual periodicity conditions apply 
between q5 = 0 and q5 = 1. The conditions at  the inner boundary need more care- 
ful consideration. The induced electric field, V A B, has no $ component. Thus it 
follows from equation (3) that at  all points 

E ,  = ~-34. (68)  
The boundary condition (21) can now be applied. This can be reduced to 

/:j,h,Ld$ = 0,  for any fixed value of @. 
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But no source of current exists and sot 

J:j,h,Ld$ =: I = constant, 

This means that m = n = 0 at  the inner boundary.? 
The exact solution to the problem is 

where 

The other composite variable, n, can be obtained from equations (72) and (73) 
by replacing M* with ( - M " )  (cf. equations (17), (18), (38) and (42)). Once 
again the high Hartmann number limit is examined. It is desirable to obtain the 
first two terms in the expansion for m. Thus, a, is approximated by 

a, = (&M*) + ( L ~ T ~ / ~ ~ M * )  + (negligible terms). 

m, = JklJ($) + &A#, $) (M*)-l+ * * * > 

(74) 

A procedure very similar to  that described in the first part of $4, gives 

(75) 

where 

and (77) 

The periodicity boundary conditions are satisfied. do is zero at  $ = 0, 7 but 
dl is not, thus there will be the expected boundary layers on $ = 0 , ~ .  In  
these layers the neglected higher harmonics are important. A similar procedure 
with the exact solution for n, yields 

n, = d 0 - J k 1 ( M * ) - l +  .... (78) 

The latter result is not obvious. 
It is instructive to derive the results (75) and (78) using the approach employed 

in 0 3. This gives 

The latter equation can be integrated with respect to 9 between the limits 0 and 
1. If the fact that dl is periodic in $ is then introduced, the result (76) is obtained 

t See, for example, Todd (1967). 
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upon the further requirement that do($) is zero at $ = 0 and $ = 7. The 
latter restriction is consistent with the fact that A,,($) does not exhibit boundary- 
layer behaviour near $ = 0 and $ = 7. The expression (76) for A, can be sub- 
stituted in equation (79). The resultant equation is 

1 

0 
where k, = k(t,  $)dt .  (81) 

k, is the average value of k on $ = constant. It is worth noting that, as k is 
periodic in 9, equation (80) shows that all the derivatives of dl have this 
periodicity. Equation (80) gives 

4 
= 4 k a - S  k(t,  $ ) d t + ~ ( @ ) ,  

0 

where P($) is an unknown function of $. 
Consideration of the variation of dl within the boundary layers shows that 

The application of this latter condition reveals that dl is defined by equation 
(77). The full results are 

The corresponding components of the current density vector are 

and (85) 

Equation (82) shows that the core velocity remains of the same order as for the 
case B, = 0 ! However, (V,), is flattened in the sense that it does not vary with 4. 
The latter result is usual in Hartmann flows (8  3) but the former is quite novel. The 
charge separation between the walls creates an electric field which, to highest 
order, balances the induced one. The current paths are very interesting (and 
involved). For each $, k must assume its mean value, k,, an even number of 
times. Also, the average value of aA1/a$ on a curve $ = constant, is zero. Thus, 
(j$)c will be zero an even number of times for each @. A typical current pattern 
is shown in figure 8. (In drawing this qualitative diagram it was assumed that 
2 was the appropriate even number.) 

Since uk; does not vanish either at  @ = 0 or at $ = 7, there will be boundary 
layers. Let 

m =A0($)+(Y*)-'{d1(4,O)- U}+ ..., (86) 
22 Fluid Mech. 31 
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in the layer at  $ = 0. The governing equation for U is 
a=u au 
aw= a4 --+- = 0, 

where w = (&if*)+$. 

FIGURE 8. The (qualitative) current paths ($6).  

It has been assumed that 8 /a$$  8/84. The boundary conditions are that 

and 

U = A l ( 4 , O )  at w = O  

U - t O  as w + m .  

The problem is solved in terms of the complete Fourier series. 
z) u = s A,exp( - ( ~ n ) * w )  sin((in)+ o +  2inq5) 

r = l  

m 

+ C, exp { - (in)* w} cos (( m)* tu + Z m $ } ,  
r = l  

A ,  = 2 

c1 = 2 

d l ( t ,  0) sin ( 2 ~ n t ) d t  s: 
s: 

where 

dYl(t, 0) cos (2mt )  dt. and 

Let n = d o ( $ )  - (JW-1(4($b7 0 )  - V }  (92) 

in the layer on y = 0. The result for V is obtained by substituting (1 - q5) for q5 
in the equations (90); and Al (1 --t, 0) for Al ( t ,  0) in the equations (91). The 
physical variables are given by 

b m / P L 2 }  = Jli6($) - P/&if*) 

s: 03 

x s exp ( - (m)* w }  sin (( m)* w }  d l ( t ,  0 )  sin ( 2 m ( t  - $)}dt ,  (93) 
1 = l  
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x 5 exp { - (m)* w} cos {(m)f w} 
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{PVSB,/PLZ) = W*)-l4$, $) - (2 /M*)  

d l ( t ,  0) cos (217r(t - +))at. (94) 

The first result shows that the velocity rises from zero to order (M*)-) (Qc 

across the boundary layer. The corresponding results for the boundary layer on 
$ = 7 are obtained by replacing 9 by (7 - 9) and Al(qi, 0) by Al($, 7) in the 
above discussion. The typical boundary-layer thicknesses are those given by 
equations (57) and (58). 

1 = l  s: 

The case of the field due to a line current, 

p = ( C / r ) 6 ,  (95) 

is rather special. If the boundaries are the concentric circles: r = a8 and r = a, 
the exact solution is 

B, = 0, 

V ,  = ( P / 4 p )  {(a2a2 - r2) + a2( 1 - 82) log (r/a8) {log 8}-l j (96) 
and 

The flow is unaffected by the magnetic field. The reason is essentially that in this 
case curl (v A B,) = 0 so that no currents are induced by the motion (e.g. Shercliff 
1965). Note that B, = B,($) in this case, as in the case of a uniform field. No other 
field has this property, so that in every other case, the core flow will be as de- 
scribed below equation (85), and a boundary layer will be present. 

7. Another flow in a radial-type field 
Whenever an annular channel encloses a cylindrical pole piece, each magnetic 

field line will intersect the inner and outer boundary just once. Some discussion 
on the experimental aspects of such flows are given in 3 7 (ii). If the inner and outer 
boundaries coincide with equiponential curves, the exact solution can easily 
be obtained. It is this situation which is now considered. The reference curve, 
$ = 0, need not be explicitly defined. The applied field will be taken as pointing 
outwards, i.e. from the inner to the outer wall. If the applied field points inwards, 
qi should be replaced by (1 - #) in the subsequent discussion. The boundary 
conditions (see $2) are 

V , = O  at $ = 0 , 1 ;  B,=O at qi=l; 

{ ~ V S B , / P L ~ }  = (A/&!*) = constant at  # = 0; 

E = - { c ( r )  B,(r)) F. 

and fclE.dl = 0, 

where C, is any closed loop within the duct. 

analysis in the limit of high Hartmann number (see 0 3). The results are 
As always, many interesting features can be uncovered by a boundary-layer 

and 

M*m = k(t, $) dt( 1 - exp { - M*#}) + A  exp { - N*$} + O(m) 1: (97) 

(98) 

22-2 
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Thus 

and 

The last mentioned boundary condition can now be applied. It requires that 

(V,), = {k, - A )  PL2/2pvM* 

pvs(B,), = (PL2/2M*) [ A + (1; -1;) w, W t )  . 

A ( l + O ( ( M * ) - l } )  = q - 1 J V p ( q $ $ ) d $ 5 d $  0 0  = L. (99) 

il: is the mean value of k within the duct. & is also the mean value of ha(@). It follows 
that (E), = (PL2/2pvM*) (ka- L), (100 ) 

and 

The first of these results means that if B, varies with $? the core velocity will 
be negative in parts of the duct ! As usual, the core velocity varies only in the 

FIGURE 9. The (qualitative) current paths ($7) .  

direction normal to the magnetic field lines, i.e. vorticity perpendicular to B, 
is suppressed. The mean value of (x)c is of order V(M*)-l ,  where is the mean 
value of I (Ql. The current path lines can be sketched with the aid of equations 
(99) to (103) and the knowledge that Hartmann boundary layers exist on the 
walls. The qualitative features of the current flow are sketched? in figure 9. 

k, is assumed to take the value E at  two values of $. Also, &/a$ is assumed t o  be 
zero at two values of $ for each 4. 
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(i) A radial Jield 

p = (D/r) P. 
The sides of the duct are circular with radius a8 and a. Globe (1959) has derived 
the exact solution. The results in the present notation (and correcting an error 
in Globe’s expression for 23,) are 

(104) 
sinh{Dln (r/a)}- 8-2sinh{Dln (ria&)}] 

sinh M * V,  = {Pa2S2/pv(D2- 4)) [(r/aS)2+ __ 

and B, = {paW/(pv)* (D2 - 4)}[D(a2 - r2)/2 

. (105) 

a*, $, etc., are defined by the equations (65)’ with 0, = 27r. The solutions are 
well behaved at D = 2. Globe (1959) has plotted some of the characteristics of the 
flow for moderate values of M*. As usual, it is instructive to examine the flow 
in the limit of large Hartmann number. It follows from the equations (65) that 

(106) 
It can now be deduced from equation (103) that V,  is of order (Pa2/p (2M*)-2, 
in the core. This result can be confirmed by taking the limit of equation (104). 
The latter equation also shows that V,  is everywhere positive. Equation (101 ) gives 
the value of B,(u) as {paz( 1 - S2) P04/2(pv)B D). This result can be confirmed by 
taking the limit of (105) as M* -+ co. Equation (103) gives (j& = 0. In  fact, 
j, = j, = 0 for all M*. The boundary layers on the walls are not full Hartmann 
layers. That is to say, there is no concentration of current in them. 

(ii) Other special case8 
The radial field has the property B, = B,($). This is also true of a uniform field. 
No other applied magnetic field has this property. Thus in all other cases, the 
features noted in the first part of this section will apply. Heiser & Shercliff 
(1965) carried out an experiment using a magnet which provides a radial field. 
However, their flow was an azimuthal one (V = V6).  This was a vital feature of 
the experiment because the yoke of the magnet closed off the annular gap, at 
one of the ends. In  Hartmann flows an axial motion occurs. It seems likely there- 
fore that a duct in the form of st double annulus would be required. These would 
be joined up near the closed end of the magnet. If this is not done, one is faced 
with the problem of passing the fluid through the yoke of the magnet. The 
above comments apply for all ‘radial-type’ fields. 

8. Remarks 

a2cosh{Dln ( r / a 8 ) ) + ~ ~ & - ~ a ~ 8 c o s h { D l n  (r/a))-a2cosh M*] 
sinh M* + 

k, = ii = constant. 

The main feature of the foregoing discussion is the choice of co-ordinate sys- 
tems. The equations under review are of the type 

and 

where b and v are functions of x and y only. Furthermore, B, is a vector whose 
divergence and curl are zero. B, lies in the (x, y)-plane and its components depend 
only on those two variables. It has been shown that the system of equations, 
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(107)) can be greatly simplified by working in the co-ordinate system traced out 
by the vector B,. 

The paper has concentrated largely on the high Hartmann number situation. 
This is because, in this limit, many interesting features can be extracted without 
much further restriction on B,. Also, the walls of the pipe were taken to be 
insulators. Even so, all the many possibilities have not been exhausted. Much 
more can be done on insulating ducts as well as on ducts with conducting walls. 
It is contended that many novel features have been revealed in this paper and 
it is hoped that the work will inspire some experiments. (A suitably curved, non- 
uniform, cylindrical field exists near the edges of the plane pole faces on those 
magnets which are used to create uniform fields.) The specific examples taken in 
this paper were circular and radial fields. The analysis for other fields is relatively 
cumbersome though technically straightforward. It is to be hoped that further 
work on other applied magnetic field distributions will be carried out. In 
particular, cases where neutral points occur within the duct deserve attention. 

Lastly, the type of analysis employed in this paper deserves comment. The 
assumption of insulating walls reduces the problem to the solution of a second 
order, linear, elliptic, partial differential equation of the form 

where M* is a constant and h is known, and properties of the solution have been 
obtained by singular perturbation analysis in the limit of large M*. A general 
analysis of problems of this type has been given by Eckhaus & de Jager (1966). 
They treat an equation of the form 

where L, is a linear, elliptic partial differential operator of the second order and 
his known, and they carry out singular perturbation analyses in the limit of large 
M*. They deal with simply connected regions and Dirichlet boundary condi- 
tions. Thus their work is directly relevant to that of $$3-5. They find that dis- 
continuities (‘wakes’), if they arise, occur along the lines x = constant, and that 
these are diffused by the elliptic term. This is the generalization of what is found 
in $3(ii). Eckhaus & de Jager also analyse ‘side’ boundary layers of the type 
which arose in $4. They give an integral expression whose appropriate series 
expansion is the generalization of the series given in $4. Finally they give a 
rigorous account of the magnitude of neglected terms, small singular regions, 
etc. This provides valuable background to the present paper. 
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